
Abstract  In this paper, 3D wide-angle parabolic equation al-
gorithm combined the Douglas scheme to the Pade series ex-
pansion is given for photonic integrated circuits and devices.
The present method is easy to solve numerically by using op-
erator splitting method in allowing wider propagation angles
and the truncation error of Douglas operator scheme is fourth-
order O(∆∆∆∆∆x4) for the finite difference in the transverse direc-
tion. Therefore, it is expected that this technique improves
the accuracy and efficiency of computation for optical field
propagations.  Finally, numerical examples are presented for
a ridge-type 3D waveguide, a curved 3D waveguide model

and a primitive MMI device.

1. Introduction
     Parabolic Equation Methods (called Beam Propagation
Method in branches of optics [1,4,8]), in which an optical
field solution can be determined by solving the one-way
operator equation for the forward-propagating field, are
powerful design tools for photonic integrated circuits and
devices. The advantage of the FD-PEM is its simple nu-
merical implementation and reasonable cpu-time and
memory requirement. On the other hand, the method has
several drawbacks because it is an approximation to the
Helmholtz equation.  The most serious of these is its lim-
ited angular range of principal propagation direction when
dealing with 3D waveguide structures having tilted and
turning waveguides. To improve the limitation on this
propagation angle, a great number of PEM’s have been
proposed by pioneers since its inception. The most popu-
lar treatment of the square root operator is to use a high-
order Pade approximation firstly proposed by Hadley[4].
However, its disadvantage is that when using a difference
scheme such as the Crank-Nicolson scheme to solve this
high-order equation, a tridaigonal matrix no longer results.
Thus a generalized solver routine and complicated pro-
gram coding are required. In particular complicated ma-
nipulations of matrix equations of bandwidth 2n+1 for a
Pade(n,n) approximation will be required. Instead of the
higher-order Pade approximations, a new approach for
developing the square root operator is to use the Pade se-
ries/product involving only first powers [2,3]. We can re-
place a complicated rational function by a succession of
simpler ones. Finally, the solution of the 3D operator split-
ting method with the Pade series/product expansion are
presented for a ridge-type 3D waveguide, a curved 3D
waveguide model and a primitive MMI device.
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2. General Formalism
   We consider the three-dimensional waveguide model.
The 3D semi-vector Helmholtz equation for optical field
is given by
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the reference wavenumber of free space.
By assuming the optical wave propagates along the +z
direction, the optical field can be separated as a slowly
varying envelope and a fast oscillating phase term, i.e.,
substituting a solution of the form E(x,y,z)=φ(x,y,z) exp(-
jk0nbz) into Eq.(1) and factoring, the wave equation is
transformed into the following equation for the slowly

varying complex amplitude φ(x,y,z):

∂φ

∂
φ

z
jk X Y

b
=− + +1  ,      (2)

where

    X k
x x

k k
b

r

r b
≡ + −− 








( )





2 2 21 1

2

∂

∂ ε

∂

∂
ε φ( ) ,

     Y k
y

k k
b b

≡ + −− ( )





2

2

2

2 21

2

∂ φ

∂
 ,

We suppose now that
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Then, if above relation holds, the approximation equation
leads to a 3D-PEM that offers an attractive combination of
accuracy and efficiency[2]
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 By applying Eq.(3) to approximate the square root in
Eq.(2), the one-way wave equation in the + z-propagation
direction can be reduced to the wide-angle 3D parabolic
equation,
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For the sake of simplicity, Eq.(4) can be also written
symbolically as follows:
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where the terms Li represent the linear operator of Eq.(4).

One form of operator splitting would be to get from n to

n+1 by the following sequence of updatings:
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When Eq.(6) is discretized with the difference scheme of
Crank-Nicolson, the truncation error in approximating the
second-order differential in the transverse direction is of
second-order O(∆x2).  To reduce this truncation error, the
partial differential involving in the operator, defined by
formula (2), is replaced by the Douglas operator
considering the 4th-order differential. Furthermore, Varga’s
treatment is applied to handle the dielectric discontinuity
on the boundary interface between core and cladding [5-

8].
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When the Douglas operator is applied, we can easily obtain
the high accuracy six-point scheme and a tridiagonal system
of complex linear equations. The present scheme allows
us to use an efficient procedure such as the Thomas
algorithm or LU decomposition, so that the computational
time is almost identical to that in the conventional PE
method based on the Crank-Nicolson scheme.

3. Numerical Results
   In order to check the validity and limitation of our
developed 3D parabolic equation method, we simulated
benchmark tests for which exact or other numerical
solutions are obtained.  The waveguiding structures are
shown in Fig.1. The step-size in the cross section is
∆x=∆y=0.1[µm], and the propagation-increment is
∆z=0.25[µm].  To avoid the effect on optical fields by the
reflection from the calculation window edge, a transparent
boundary condition is implemented at the edge of the cross
section for the program.  In the first example propagation
of the ridge-type 3D waveguide excited with a focused
Gaussian beam at the input is investigated.  As shown in
Fig.1(a), the refractive indexes are na=1, nf=3.44 and

ns=3.40.  The wavelength  λ is 1.15 µm,a wave incident in
waveguide 1 is gaussian beam and the width W is 3 µm.
The steady-state field distribution is observed at the
propagation distance z=1000µm. It is found that the electric
field transfers from one side to the other side at the
propagation distance z=4000µm. As our second example,
we consider a primitive Multi-Mode Interference coupler
reported in [9] as shown in Fig.1(b) . The 13.28µm wide
multimode section supports 13 guided modes and has
length L=2312µm.  Figure 3 shows the simulation result
of 2x2 MMI coupler. It is found that direct and mirror single
images of the input field are occur because of interference
at even and odd multiples of the length (3Lπ).  Finally, we
simulated a 90 degree bent waveguide as shown in Fig.1(c).
Figure 4 shows a contour line display of the optical field
distribution for this bent strip waveguide.Here R= 200 µm
is the radius of curvature, λ=0.6328 µm,W=3.0 µm and
na=1, nf=1.491, ns=1.46 . It is found that the initial Gaussian
field deviates from the center of bent waveguide.

 4. Conclusion
  The recently developed finite-difference parabolic
equation method combined a Douglas operator scheme to
the Pade series expansion is given for the field propagation
properties of waveguides and applied in the numerical
analysis of benchmark tests. The numerical results for
Pade(2,2) approximation is almost the same as the exact
field pattern, although the Pade (1,1) approximation fails
to give good results.  Since the sum form of the linear
rational function is more sensitive to round off errors than
the product form, it is necessary to program in double
precision.  In the near future, the algorithms proposed here
will be applied and extended to optical field propagation
in practical longitudinally varying 3D dielectric planar
circuits.
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Fig.1 Strucure and model of 3D optical waveguides.
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Fig.2 Optical field distribution of ridge-type 3D waveguide by contour display.

Fig.3 Optical intensity pattern of MMI coupler.
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Fig.4 Field propagation for bent strip waveguide as a function of bend angle z=Rθθθθθ.
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